Lithium titanate

Like lithium-nickel-cobalt-aluminum batteries, lithium-titanate (a compound containing lithium and titanium) batteries have recently come to the attention of the EV and grid-storage industries, although they are also used in computer batteries. This type of battery chemistry has been around since the 1980s and can replace graphite in the anode of the typical lithium-ion battery. Unlike lithium-nickel-cobalt-aluminum, lithium titanate is highly safety. Batteries using this chemistry display low-temperature performance and a long life span as well as a fast recharging capability that is superior to other types of lithium batteries. Development efforts are focused on improving specific energy while lowering costs.

It's all in the design

If lithium-cobalt-oxide batteries are so easily susceptible to thermal runaway, how has this particular chemistry not caused similar issues for Tesla's (NASDAQ:TSLA) luxury automobiles or SpaceX's rockets? Wired Magazine's Jason Paur gives a good explanation: it's all in the design.

“Tesla and SpaceX use battery packs comprised of thousands of cylindrical 18650 cells, each roughly the size of a AA battery. The cells have been refined through more than 15 years of manufacturing and use in consumer products such as laptops and power tools. Tesla and SpaceX closely control the charging, output and temperature of the cells using a sophisticated power management system,” stated Paur. However, the Dreamliner's battery “is comprised of just eight cells housed in a single container,” a design which Tesla Motors and SpaceX CEO Elon Musk criticized in an email to Flightglobal.

"Large cells without enough space between them to isolate against the cell-to-cell thermal domino effect means it is simply a matter of time before there are more incidents of this nature," said Musk. "Moreover, when thermal runaway occurs with a big cell, a proportionately larger amount of energy is released and it is very difficult to prevent that energy from then heating up the neighboring cells and causing a domino effect that results in the entire pack catching fire."