Skip to main content
Publish date:

Silver and Germ Warfare

The combination of flexibility and efficacy seems to provide a significant advantage to silver-based technology in the battle against microorganisms.

NEW YORK ( TheStreet) -- For those expecting an explosive piece of investigative journalism, tracing some sinister link between silver and weapons of mass destruction, my apologies. When it comes to "germ warfare," silver's role is entirely a defensive one.

I have looked at several of the companies using silver as an anti-microbial agent, and I have learned a little more about the biological aspects of this application.

The first point to make about this technology is that I had (erroneously) referred to this previously as "anti-bacterial" technology, directly implying that it was only effective against bacteria. As I quickly discovered, silver has much broader "anti-microbial" properties -- meaning that it kills not only bacteria, but also molds and fungi.

The next point to make here is that this anti-microbial effect is produced through the release of silver ions, the active agent which kills microorganisms. These ions can be released in different ways (and different rates), depending on the precise composition of the anti-microbial substance.

In the case of silver, the three main categories of such substances are ionic additives, salts and metals. The primary difference among these substances is the rate at which they release silver ions, and (conversely) the length of time that these substances can maintain their anti-microbial effect. Thus, the type of silver anti-microbial treatment used will depend on the nature of the product being devised.

In the case of "silver body-washes," and other single-use applications, the silver ions would be delivered through ionic additives, which release these ions at the greatest rate/speed -- and are completely soluble in water. On the other hand, with anti-microbial treatments which are intended to be durable (such as clothing or upholstery with these anti-microbial additives), it is important that the ions be released much more gradually, so that the anti-microbial effect lasts for as long as practically possible. For these applications, the metals-based products are most appropriate.

In between are the salt-based anti-microbial products, which are less water-soluble, and have a slower release of ions than ionic additives and a greater duration of effect.

More specifically, I was introduced to a Swiss company,

HeiQ Materials, which "manufactures high-performance textile effects for the most demanding functionalities." To explain this in greater detail, HeiQ manufactures "microcomposite" silver- additives which can be used to add anti-microbial properties not only to textiles, but also to medical devices and plastic coatings.

There are several facets to HeiQ's business model which should greatly excite silver investors. Most-notably, HeiQ does not manufacture anti-microbial clothing, or upholstery, or many similar products where anti-microbial, silver-based technology can be introduced. Instead, it manufactures an additive which can be relatively easily assimilated into the manufacturing processes of companies which are already manufacturing such consumer and commercial products.

What this means is that this emerging technology can be incorporated into our economies far more rapidly than if each individual manufacturer needed to design and engineer their own anti-microbial products, one by one. The other aspect of HeiQ's silver-based technology which I found especially exciting was that it is an extremely flexible technology.

TheStreet Recommends

In the case of anti-microbial textiles, it can either be essentially woven into these textiles or applied to the surface in a coating. The trade-off here is obvious. Weaving the silver into the textile results in a slower rate of ion-release, and thus greater durability. Applying this to the textile surface increases the rate of ion-release (and the potency of the anti-microbial effect), but with a decrease in durability as a consequence.

As a reminder to readers, in commercial terms there are two very different uses for this technology. Polyester-silver sportswear uses this technology to make sportswear garments odor-resistant since it is the growth of bacteria which produces odor (through perspiration).

Otherwise, its anti-microbial properties are health-related. Armies provide soldiers with silver-laced socks to prevent or at least retard many forms of foot-infections. Beyond this, the ability to incorporate this into both clothing, bedding and upholstery means that the potential uses of silver-based anti-microbial textiles are virtually infinite, but naturally begin with hospitals, labs, doctors' offices, and all other health-care facilities where there is a need to prevent/control cross-contamination.

Silver-based technologies are not the only option when it comes to anti-microbial textiles. I came across

another company which manufacturers an anti-microbial treatment for the garments of hospital workers, and does not use silver-based technology.

According to HeiQ, silver is a relatively new product for use with textiles. Alternative technologies include quaternary ammoniums, and Triclosan (which has been recently de-listed from Oekotex, an international testing and certification system for textiles). Silver is purportedly the "biocide" product with the broadest bacterial-killing spectrum, and the most "wash-fast" technology, which presumably means treatments which maintain efficacy after washing.

Naturally cost-effectiveness will be an important factor in the future of these competing technologies. Silver-bulls may be worried that a sudden spike in the price of silver could kill off innovation and expansion in the use of silver as an anti-microbial agent. This greatly depends upon the precise application involved. With respect to these silver-based products, research conducted by HeiQ shows that (depending on the product) silver is used in concentrations ranging from 1/1,000th (by weight) to only 10 ppm (parts per million).

This is consistent with my own previous calculation regarding the silver used in polyester sportswear. By weight, such products only use 1/40,000th of silver, relative to the weight of all other inputs. This means (as I have often observed before) that such silver-based products will be extremely price-inelastic. What that equates to is that the demand for such products will change very little -- even with very large increases in the price of silver. Given this parameter, price does not appear to be the most important determinant in a longer term analysis of which is the superior technology.

In summary, the combination of flexibility and efficacy seems to provide a significant advantage to silver-based technology in the battle against microorganisms -- and especially bacteria -- while its price inelasticity means that demand will stay strong, even in the face of large increases in the price of silver.

With super-bugs and new issues such as medical tourism, the importance of such technology can only grow with time. This puts silver in the unique position of being a good which may not only save you financially, but also may save your life.

This commentary comes from an independent investor or market observer as part of TheStreet guest contributor program. The views expressed are those of the author and do not necessarily represent the views of TheStreet or its management.