This Day On The Street
Continue to site
ADVERTISEMENT
This account is pending registration confirmation. Please click on the link within the confirmation email previously sent you to complete registration.
Need a new registration confirmation email? Click here

High-Tech Advances In Gene Therapy Overcome Challenges, Offer Hope For Patients With Hard-to-Treat Blood Disorders

In this process, the team selectively removed the alpha/beta-positive T cells and CD19-positive B cells from the donor graft, as those are more likely to trigger donor cells to attack recipient cells, resulting in a dangerous complication known as graft-versus-host disease (GVHD). At the same time, the process preserved healthy, mature, immune-active cells known as natural killer and gamma/delta-positive T cells that help prevent disease relapse and protect against infection. A total of 45 patients with acute leukemia were treated with genetically engineered stem cells from one of their parents. Transplants engrafted in 44 of the 45 patients, with a 29 percent cumulative incidence of mild GVHD. One month after transplant, follow-up analyses showed that transplanted cells had persisted in the patients and demonstrated potential anti-leukemic activity, which continued to increase over time.

"Our results, which demonstrate that transplantation of selectively modified, half-matched donor stem cells boasts success rates equivalent to those of a fully matched transplant, preventing GVHD and reducing transplant-related death, help continue to establish this approach as a viable option for patients without a matched donor," said study author Alice Bertaina, MD, of the Bambino Gesu Children's Hospital in Rome, Italy. "This has the potential to make this lifesaving treatment more accessible to a much larger population of patients who may not have a perfect donor match."

Dr. Bertaina will present this study during an oral presentation at 5:00 p.m. CST on Sunday, December 8, in Rooms 208-210 of the Ernest N. Morial Convention Center.

Immune Reconstitution and Preliminary Safety Analysis of 9 Patients Treated With Somatic Gene Therapy for X-Linked Severe Combined Immunodeficiency (SCID-X1) With a Self-Inactivating Gammaretroviral Vector [ 715 ]

Previous studies have investigated the potential for gene therapy using a retroviral vector to treat children with the fatal inherited disease, X-linked severe combined immunodeficiency (SCID-X1, or "bubble boy disease"). The vector works by latching to the surface of the T cell and injecting genetic material that helps "train" the cells to properly produce their own immune cells. While successful in earlier studies, in some cases the children developed leukemia when new corrective genetic material was inserted near a trigger in the children's DNA, predisposing T cells to turn into cancer cells.

3 of 6

Check Out Our Best Services for Investors

Action Alerts PLUS

Portfolio Manager Jim Cramer and Director of Research Jack Mohr reveal their investment tactics while giving advanced notice before every trade.

Product Features:
  • $2.5+ million portfolio
  • Large-cap and dividend focus
  • Intraday trade alerts from Cramer
Quant Ratings

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Product Features:
  • Buy, hold, or sell recommendations for over 4,300 stocks
  • Unlimited research reports on your favorite stocks
  • A custom stock screener
Stocks Under $10

David Peltier uncovers low dollar stocks with serious upside potential that are flying under Wall Street's radar.

Product Features:
  • Model portfolio
  • Stocks trading below $10
  • Intraday trade alerts
14-Days Free
Only $9.95
14-Days Free
Submit an article to us!
SYM TRADE IT LAST %CHG

Markets

DOW 17,928.20 -142.20 -0.79%
S&P 500 2,089.46 -25.03 -1.18%
NASDAQ 4,939.3270 -77.6020 -1.55%

Partners Compare Online Brokers

Free Reports

Top Rated Stocks Top Rated Funds Top Rated ETFs