This Day On The Street
Continue to site
ADVERTISEMENT
This account is pending registration confirmation. Please click on the link within the confirmation email previously sent you to complete registration.
Need a new registration confirmation email? Click here

UMD Researchers Achieve Breakthrough In Nanoprecision Imaging

Flow control of single quantum dot enables measurements with nanoscale accuracy at lower cost

COLLEGE PARK, Md., Feb. 11, 2013 /PRNewswire-USNewswire/ -- Finding ways to see, position, measure, and accurately manipulate nanoscale objects is an ongoing challenge for researchers developing the next generation of ultra-compact electronics, sensors and optical devices. Even the most advanced conventional microscopes are limited by diffraction of the shortest wavelength of visible light, about 400 nanometers, rendering them unable to produce images or measurements of objects that are significantly smaller than this threshold.

Researchers attempt to solve this problem by using "reporting probes." A near-field scanning optical microscope (NSOM), for example, is equipped with a probe attached to a fine mechanical tip that can scan a nanoscale object and create an image based on the electromagnetic field it generates. But NSOMs are complex, delicate and expensive pieces of equipment, and the presence of the tip disturbs the interaction between the probe and the sample, distorting the image.

A new study by University of Maryland (UMD) researchers, published in the Feb. 5, 2013 issue of the journal Nature Communications , describes a novel technique for imaging far below the diffraction limit by using a particle that is much smaller than the wavelength of light as an optical probe.  The particle is manipulated with high precision using an inexpensive microfluidic device. The breakthrough has enabled the researchers to capture nanoscale measurements with a spatial accuracy of 12 nanometers.

Quantum Dots: Nanoscopic Spotlights in a Microscopic River

A quantum dot is a 3–6 nanometer-sized, semiconducting particle about 25 times the diameter of a single atom. At room temperature, quantum dots can emit single photons of light that can be tuned to a desired wavelength. This makes them ideal probes for examining nanostructures smaller than the visible light threshold. Positioned close to a nanoscale object, the quantum dot becomes a sort of spotlight that amplifies what the microscope alone cannot see.

1 of 3

Check Out Our Best Services for Investors

Action Alerts PLUS

Portfolio Manager Jim Cramer and Director of Research Jack Mohr reveal their investment tactics while giving advanced notice before every trade.

Product Features:
  • $2.5+ million portfolio
  • Large-cap and dividend focus
  • Intraday trade alerts from Cramer
Quant Ratings

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Product Features:
  • Buy, hold, or sell recommendations for over 4,300 stocks
  • Unlimited research reports on your favorite stocks
  • A custom stock screener
Stocks Under $10

David Peltier uncovers low dollar stocks with serious upside potential that are flying under Wall Street's radar.

Product Features:
  • Model portfolio
  • Stocks trading below $10
  • Intraday trade alerts
14-Days Free
Only $9.95
14-Days Free
To begin commenting right away, you can log in below using your Disqus, Facebook, Twitter, OpenID or Yahoo login credentials. Alternatively, you can post a comment as a "guest" just by entering an email address. Your use of the commenting tool is subject to multiple terms of service/use and privacy policies - see here for more details.
Submit an article to us!
SYM TRADE IT LAST %CHG

Markets

DOW 18,080.14 +21.45 0.12%
S&P 500 2,117.69 +4.76 0.23%
NASDAQ 5,092.0850 +36.0220 0.71%

Partners Compare Online Brokers

Free Reports

Top Rated Stocks Top Rated Funds Top Rated ETFs